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Buoyancy-sur face tension instability by the 
method of energy 
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Department of Mechanics, Johns Hopkins University 

(Received 23 January 1969 and in revised form 3 June 1969) 

The energy theory, giving a sufficient condition for stability, is developed for the 
motions in a horizontal, heated layer subject to buoyancy and surface tension 
effects. The free surface is assumed to be non-deformable (Pearson’s 1958 model). 

It is shown that the equations governing the energy theory are the symmetric 
part of the time-independent linear theory problem, and that the surface 
tension terms behave like a bounded perturbation to the B6nard problem. 
The qualitative behaviour of the optimal stability boundary as a function of its 
parameters is given. The optimal stability boundary is computed, and compared 
with previous linear and non-linear stability theories in terms of allowable 
subcritical instabilities. 

1. Introduction 
The recent work of Joseph and his co-workers has convincingly shown that 

the methods of energy and linear stability theory complement each other in 
demarking that region of parameter space, in which subcritical instabilities are 
allowable. The former limit gives a sufficient condition for stability, the latter 
a sufficient condition for instability. Those instabilities due to the finite amplitude 
of disturbances are allowable only between the two limits. 

In the case of BBnard convection subject to the Boussinesq approximation, 
the time-independent linear operator of the governing equations is self-adjoint, 
and the only non-linearities are convective in nature. As a result, the critical 
values RE and RL of the Rayleigh number given by the energy and linear theories 
are identical (Joseph 1965). No subcritical instabilities are possible. When the 
above fluid layer contains constant, distributed heat sources, Joseph & Shir 
(1966) have found that RE and RL differ by only a small amount, and that sub- 
critical instabilities are confined to a narrow band of Rayleigh numbers beneath 
RL. The addition of the constant, distributed heat sources appears in the govern- 
ing equations as a real, bounded perturbation to the linear part of the system 
(see Davis 1969). For a sufficiently small amount of sources, the growth rates of 
linear theory are real (Davis 1969). The principle of exchange of stabilities is 
valid. Thus, the time-independent linear equations, representing the linear 
theory stability boundary, and the energy theory differ only by a small, bounded 
perturbation, and hence it is not surprising that, at  least for sufficiently small 
amounts of heat sources, RE- RL is small. In  fact, systems whose time-indepen- 
dent linear operator is a small, real (non-self-adjoint) perturbation of a real, 
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self-adjoint linear operator, and whose non-linearities are only of convective 
type, have the outcomes of their linear, energy and non-linear stability theories 
qualitatively predictable (and close). A detailed discussion of these features will 
be made elsewhere. 

We now consider an example related to the above class. A thin motionless fluid 
layer of infinite horizontal extent is heated uniformly from below. The lower 
boundary is a rigid plane, and the upper is a free surface. When heated with 
sufficient intensity, the layer can become unstable through the joint mechanisms 
of buoyancy and surface tension gradients (the BBnard-Pearson problem). When 
gravity is absent, a linear theory has been developed by Pearson (1958), Sternling 
& Scriven (1964) and Smith (1966); Pearson’s initial model containing a non- 
deflecting free surface has been improved; the new model includes the effects of 
the presence of capillary and gravity waves. The combined buoyancy-surface 
tension problem using linear theory and Pearson’s model has been considered by 
Nield (1964). A first attempt on the surface tension problem using the methods 
of non-linear stability theory has been completed by Scanlon & Segel (1967), 
who considered an infinitely deep layer with gravity absent, and found a sub- 
critical instability at approximately 2-3 yo below the critical Marangoni number 
of linear theory. In  their model, it is found that there are no surface deflexions 
present; the free surface does not deform, and hence their analysis was based on 
Pearson’s model. 

In  the present work, we will formulate the BBnard-Pearson problem for a 
layer whose free surface is assumed to be non-deformable, or in terms of non- 
dimensional quantities assumed to have zero Crispation number (see 3 2). 
Although this is a strong assumption, and as a result the conclusions reached here 
are inapplicable in various situations, the model does describe a large class of 
physically interesting situations (see Smith 1966), and also allows comparison 
with previous linear and non-linear analyses which used Pearson’s model. 

First, we will show that the presence of the surface tension gradients perturbs 
the linear operator of the BBnard problem by an unbounded operator, but one 
which behaves as a bounded operator. We thus expect subcritical instabilities 
to be confined to small band of Rayleigh numbers below the linear theory critical 
value, at  least for sufficiently small Marangoni number. 

The energy identities and consequent Euler-Lagrange equations governing the 
optimal stability boundary (energy theory) are derived. The Euler-Lagrange 
equations are shown to be merely the symmetric part of the time-independent 
portion of the linear theory problem. The qualitative dependence of the optimal 
stability boundary as a function of the parameters is examined using parametric 
differentiation. 

The optimal stability boundary is computed and compared with Nield’s (1964) 
linear theory and Scanlon & Segel’s (1967) non-linear analysis. 

2. Preliminaries 
The following notation will be used: d is the mean distance between two infinite 

horizontal surfaces, the lower is a constant temperature, rigid plane, while the 
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upper is a free surface on which a general heat transfer condition governs. These 
surfaces bound a fluid of density po. The acceleration of gravity (taken to act 
vertically downward) is g ,  and a, v and K are the coefficients of thermal expansion, 
kinematic viscosity and thermal diffusivity of the fluid, respectively. The dimen- 
sionless horizontal co-ordinates 2 and y, and vertical co-ordinates x ,  are referred 
to length d ;  the velocity vector v = (u, v, w), the temperature 0, the time t and 
the pressurep are referred to scales K/d, AT, d2/K, po ~ v / d ~ ,  where AT is the tempera- 
ture difference across the layer. We employ the Boussinesq approximation, under 
which the governing equations are the following: 

av 
at 

P-1- + P-lv. vv = - vp + v2v + Rek, ( 2 . 1 ~ )  

( 2 . l b )  
ae -+V.ve = 
at 

v .v  = 0. ( 2 . l c )  

Here, the Prandtl number P = v/K, and the Rayleigh number R = u A T g d 3 / ~ v .  
The relevant boundary conditions are the following: 

v=e=O, on z = O ,  ( 2 . 2 4  

e,+Le = w = uz+Be, = v z + ~ e ,  = 0, on z = 1. (2.2b) 

Equation ( 2 . 2 ~ )  expresses the facts that the lower plane is rigid and perfectly 
conducting. The first condition of equation (2.2b) is the general heat transfer 
relation, the second condition is the kinematic condition and the third and fourth 
relations express the fact that on the free surface an induced temperature gradient 
causes surface tractions proportional to the Marangoni number B = soATd/po v ~ ,  
where so is the negative of the rate of change of the surface tension on the surface 
with respect to temperature. It should be emphasized that the conditions (2.26) 
are applied on x = 1, only because we have assumed that the free surface i s  non- 
deformable. Although this restricts the applicability of our results to situations 
where the Crispation number pOvK/sd is very small (see Smith 1966), a large 
class of physically interesting problems are covered. Here s is the mean surface 
tension. 

We simultaneously consider two possibilities : (a)  All dependent variables are 
periodic in the horizontal co-ordinates of periods 2nla and 2nl/3, respectively. 
The cell boundaries are assumed to have time-independent positions. The last 
assumption is implicitly made in all derivations of the energy identities (e.g. 
see Joseph 1965) for periodic disturbances. (b)  All dependent variables are 
Fourier transformable in x and y .  

In case (a) ,  we define the integral over the volume 9'- of a single cell, 
2nla 2nlF 

( f ( x , y , z , t ) )  = j z=o s v=o j ~ ~ o f ( r , y , z , t ) d z d Y d x ,  

and the surface integral at z = 1 by 

In case (b) ,  the x and y limits in the above integrals are taken from -a to co. 
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Let us consider the space 9’ of seven vectors YP, 

9 = y I Y!” = (v, 8,4x, Y, 1 ,  t ) ,  v(x,  y, 1, t ) ,  y, 1,  t ) ) ,  

V . V  = 0, v (x ,y ,o , t )  = e(z, Y,o,t)  = w(z,y, i , t )  = 0; 
( 
(v, 0) has continuous second partial derivatives; Y is either periodic in 
x and y of period 2 7 ~ 1 ~  and 2nlP respectively, or else Fourier transformable 
in x and y; the scalar product of Y1 and Yz is defined by 

(v,. v2 +Aelo2) +Il (u1u2 + v1v2 + helo,), A > 0). 

We have generalized the scalar product by the introduction of the positive 
parameter A ,  in order to obtain the analogy with the ‘linking’ parameter defined 
by Joseph (1965). The time-independent part of the linearized version of system 
(2.1) can then be written as 

LY-PY = 0, 

where 

and 

and 0, is the i x j  zero matrix. 

(i) Demonstration that the surface tension terms in the periodic case 
behave as a bounded perturbation to the BLnurd problem 

We wish to regard the operator z as consisting of two parts. The first is the self- 
adjoint operator corresponding to only buoyancy driven connection ( B  = 0)  
plus a second part M ,  which denotes the contribution due to surface tension 
gradients. If we regard B as small, and the surface tension contributions as 
perturbations on the BBnard convection problem, the perturbation operator 
has the form 
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where 

For convenience of the demonstration we have let + = 2/RB and h = R. The 
norm IlC[l of C can be found for 

In  the case of periodic disturbances of overall wave-number a, as, = a2+p2, 

linear theory allows consideration of disturbances of the form cos ax cos py.  We 
wish to estimate the effect of C in the linear theory, so that we also assume this 
form of disturbance. It follows that 

Using both (2.3) and (2.4), we find that 

so that llMll = llCll < *(B/,/R) Max (a2, 1) valid for R > 0. 

We have tried to estimate that part of the time-independent linear operator 
containing surface tension contributions. According to linear theory, as a2 -+ 00, 

R, N a4. As a2 -+ 0, R, N a-2. Thus, 4BR-a max (a2, 1) is always bounded, and is 
certainly small when B is small. Furthermore, it turns out that in the forth- 
coming energy theory, the preferred value of a2 changes very little, so that I( C 11 is 
small in the energy theory as well. The fact that llCll is bounded by a2, for a2 > 1, 
reflects the fact that differential operators are generally unbounded. By restrict- 
ing ourselves to a finite interval of wave-numbers, due to a physical preference, 
we see that C behaves as would a bounded perturbation operator, and so we 
might expect the linear theory and energy limit to be rather close, at  least for 
sufficiently small B.  

It will be convenient later to have the symmetric part of z. We again consider 
the original system LYP - P Y  = 0 with Y E 9' (i.e. with 0 replacing R-44 and 
Fourier transformable as well as periodic disturbances) and with arbitrary A, 
h > 0. By standard methods we find that the adjoint problem is 

DP - PQ = 0, 

where 
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A,  = 
A,, = [! 

0 
0 v2 A 

Since both E and L are defined on the same space 9, we can write 

The symmetric part L, is 
z = * ( E + L ) + @ - E ) .  

(2.5) 

where 

A ,  = A,, = 

(ii) The energy identities 
Let us define 

g(e) = (ve. ve) + L  82, 11 

0 0 
V2 0 
0 V2 $(R+A) 

( 2 . 6 ~ )  

D(v) = (VV:VV). (2.6b) 

Let us dot (2.1 a)  with v and integrate over V .  We obtain, using boundary 
conditions (2.2) and definition (2.6b), 

(2.7 a) 

Let us multiply (2.lb) by 8, and integrate over Y.  We obtain, using boundary 
1 1  

I d  ---(P-'V.V) = - B  ew,+R(WO)-D(v). 
2 at 

conditions (2.2) and definition (2.6a), 

(2 .7b)  
I d  
2 at 
- - (ea) = (we) - qtq.  

We form the sum of (2.7a) and A, h > 0 times (2.7b),  and obtain 

1 1  

I d  
2 at 
- - (P-~V. v + Ae2) = (R + A)  (we) - [ q v )  + ~ . q e ) l -  B ew,. (2.8) 

+=JAe, A =  BP, R =  BN,, (2.9) 

In  order to symmetrize the problem, let us make the following changes of variable : 

where B and R are taken to be positive. Equation (2.8) then takes the form, 

(2.10) 
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where E = i(P-1~. v -t q52} is an energy functional which is positive whenever 
h is positive. It follows from (2.10) that 

[D(v)+9(q5)]-1-& dE < - I + - ,  J B  (2.11) 
P 

whenever the following maximum problem is satisfied: 

(iii) The maximum problem 

and 

Here 9- = {(v, 9) I (v, q5) have continuous second partial derivatives, V . v = 0, 
v(z, y ,  0, t )  = q5(q y, 0,  t )  = w(x, y ,  1, t )  = 0, and either (v, q5) is periodic in x and y 
of period, say, 2v/u and 27r//3 respectively, or (v, q5) is Fourier transformable in 
x and y). 

Let the inequalities D(v) 2 +ap-1(v.v), 

9(q5) 2 &aW2>, 

with a4 > 0 and a$ > 0, hold. Then, for any fixed values of ,u > 0 and N, 
,/B < p(p, N,), in the time interval [0 ,7] ,  we have 

0, 

E(7) 6 E(0)exp - 1-- 6% , { ( $7 1 
where E(0) is the initial energy of the disturbance and g2 = min (a:,,;). If 
4 B < p for all 7, then E --f 0, and the flow is asymptotically stable in the mean. 
The proof follows directly (Joseph & Shir 1966). We thus have certain asymptotic 
stability if JB  < p. 

We can obtain the Euler-Lagrange equations for the maximum problem by 
introducing Lagrange multipliers B, and n(x, y ,  x ,  t ) .  The equations result from 

They are: 

V2v+IB "+Nlq5k-VII = 0, "T- 
v . v  = o, 

(2.12) 

with the boundary conditions 

v = $ = O ,  z = o ,  (2.13 a) 

1 B" 1 *" i B  
q5c+Lq5+--wz=w=u+--q5 2,Ip =v+-+J  a 2 J p  = o ,  z = 1 .  

2 J P  

23 

(2.13b) 
Fluid Mech. 39 
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The last three conditions of (2.13b) are ‘natural’ boundary conditions (see 
Courant & Hilbert 1961, p. 208), often called the dynamic boundary conditions. 
For any solution of the above, we have that 

(v. V’V) = - D(v) 

so that we can obtain 
- [ D ( V ) + ~ ( $ ) ] - ? /  B $wZ+BppSr ($w)  = 0. 

JP 1 4 P  

(2.14) 

Thus, the minimum of the positive {B$ coincides with the solution of the maxi- 
mum problem, i.e. POL, Nr) = minBp(N,), 
for any of the positive set of eigenvalues {BPI. The domain of stability is largest 
when we choose that value of p, pC, giving the maximum value of p. Thus, 

I?$,(&.) = maxp(,u, N,) = max [minB,(N,)]. 
lL>O P> 0 

(2.15) 

We note that the Euler-Lagrange system (2.12) and (2.13) is identical to the 
symmetric part (2.5) of the linear time-dependent operator involved in the govern- 
ing equations. In  addition to (2.5) being more easily obtained than the system 
(2.12) and (2.13), the analysis shows us the relationship between the equations 
which govern the energy theory and the linear theory. When the time-indepen- 
dent part of the linear theory equation is only a small perturbation from a self- 
adjoint system, the eigenvalues of its symmetric part (the energy problem) 
cannot be vastly different. 

3. Parametric differentiation 
Let B,(p, N,) and (v(z, y ,  z; p, NJ, $(x, y ,  z ;  p ,  N,)), which solve the maximum 

problem ( M )  and the equivalent Euler-Lagrange system (2.12), (2.13), be con- 
tinuously differentiable functions of their arguments. Let the best value pc of 
the coupling parameter ,u be finite and non-zero. Then 

Proof 

Let (v,$) be a solution for any fixed values of p and N,. Consider two such 
solutions, and label them with subscripts. From (2.12) and (2.13) we can find: 
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If we form the sum of (a) - ( b )  + (c)  - ( d )  and allow the solutions to coalesce, 
we obtain the general relation among solutions as the parameters are allowed to 
vary : 

For fixed N, and L, we find that 

But, subject to our hypotheses, the optimum value of p is determined by the 
relation 

so that 

It can be shown that, since p > 0, pc corresponds to a maximum of B,. 

The integral Jl ( - +w,) gives a measure of two features of the free surface. The 

surface tension mechanism is made effective by temperature gradients along 
the free surface. Thus, if #(x, y, 1, t )  were zero, there would be no surface tension 
gradient. The rigidity of the free surface is measured by w,. When 

u@, y ,  1, t )  = v(x, y ,  1, t )  = 0, wz(x, Y ,  1, t )  = 0 

and there is no slip on z = 1. 
The expression (3.1) for pc is useful in computing the optimal stability boundary 

since for B = 0, A, = B,uc is merely RL and A, increases monotonically with 
increasing B. 

The  optimal stability boundary Bk(N,) is a monotone decreasing function of &. 
For, from (3.2)) for fixed p and L, we have 

A=- 8B B P  

and, from (2.14)) we have 
aB 
--lf = 2% < 0. 

JP 
23-2 
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The values of €$(N,) increase monotonicdly with L. For, from (3.2), for fixed p 
and N,, we have 

where we have used (2.14). 

4. Computation of the optimal stability boundary 
Our scheme for the computation of B,(N,) is as follows: 
(a)  Separate variables or Fourier transform system (2.12) and (2.13). In 

either case, the only influence of the x and y variations is to introduce an overall 
wave-number a > 0. (b )  For fixed values of N,, L, ,u find minB,. This was done 

numerically by the Runge-Kutta-Gill method. This was found to be both faster 
Q 

R 

0.0 
100.0 
200.0 
300.0 
400.0 
500.0 
600.0 
669.0 

BL 

L = O  

79.61 
68.43 
57.12 
45.49 
33.59 
21.39 

8.857 
0-000 

B E  

56.77 
50.59 
43.87 
36.51 
28.32 
19.07 
8.423 
o*ooo 

L = 10 

0.0 413.4 180.7 
100.0 378.7 171-3 
300.0 305.0 150.2 
500.0 225.1 124.3 
700.0 138.6 89.99 
900.0 44.73 37-39 
989-49 o*ooo 0~000 

L = 1000 
0.0 3217 x 10 - 

200.0 2752x 10 1957 
400.0 2238 x 10 1783 
600.0 1671 x 10 1576 
800.0 1049 x 10 1277 

1000~0 3647 769.1 
1099.12 o*ooo 0.000 

TABLE 1. The critical Marangoni numbers B E  and BL for the energy theory and linear 
theory are given for various Rayleigh numbers R and for L = 0, 10, 1000 (L = 0 corre- 
sponds to an insulating upper free surface, L = 00 corresponds to a perfectly conducting 
upper free surfme) 
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and more accurate than an ‘exact’ solution by Fourier series. (c) The value of p 
was varied to give a maximum value of B,. This was called B&(Nr); this locus is 
the optimal stability boundary for the given value of L. 

60 

50 

B 
40 

30 

20 

10 

Unstable 

0 
R 

FIQURE 1. Stability curves: L = 0, B va. R, --- linear theory; -, energy theory. 

Table 1 presents the relevant numerical results. Both BE and BL, the linear 
theory critical Marangoni number, are presented for various values of L. Figures 
1-3 illustrate the results. For L = 0, subcritical instabilities are allowable at 
R = 0 (the Pearson problem) for 56-77 < B < 79.61, or within 28.7 yo of the 
linear theory prediction. This band of allowable subcritical instabilities shr inks  
to zero as R -f 669.0, at which point B = 0. This is the BBnard problem, and 
the result is in accord with Joseph (1965). 

For small values of B, we can estimate the norm of the surface tension terms, 
+B/,/ R max (as, 1) by using the approximate linear theory result given by Nield 
(1964), R/Rc+B/B, = 1, where R = R, when B = 0, and B = B, when R = 0. 
We find that, as L increases, both B and R increase, so that B/ , /R increases with 
increasing L (for a2 slowly varying). Thus, the norm of the surface tension terms 
increases with increasing L; we therefore expect the results of the energy and 
linear theories to differ more for large L than for small L. This is borne out by the 
numerical results in figures 1-3. 

Scanlon & Segel (1967) have used the methods of non-linear hydrodynamic 
stability on the surface tension problem with no gravity (R  = 0). They considered 
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FIWJRE 2. Stability curves: L = 10, B vs. R, 
___ linear theory; -, energy theory. 
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FIGURE 3. Stability curves: L = 1000, B ws. R, 
_-- linear theory; -, energy theory. 
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infinite Prandtl number, L = 0 and a layer of infinite depth. In  this problem, 
surface deflexions are identically zero at each order, so that Pearson’s (1958) 
model is valid. They found that subcritical instabilities were possible 2.3 % 
below BL, the Marangoni number of linear theory. That result, scaled as 
BE = 0-977BL, is marked with a cross on figure 1, and is seen to be well within 
the allowable band of subcritical instabilities demarked herein. 

This work was supported in part by the National Science Foundation, under 
Grant 6A-641X and Contract 4010(02). 
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